Journal of Physical Studies 24(4), Article 4601 [8 pages] (2020)
DOI: https://doi.org/10.30970/jps.24.4601

STRUCTURE AND FREE VOLUME DISTRIBUTION IN Bi–Zn LIQUID ALLOYS

I. Shtablavyi{1} , V. Plechystyy{1}, B. Tsizh{2,3} , S. Mudry{1} 

1 Ivan Franko National University of Lviv,
8, Kyrylo & Mefodiy St., Lviv, UA–79005, Ukraine,
2Stepan Gzhytsky Lviv National University of Veterinary Medicine and Biotechnologies,
50, Pekarska St., Lviv, UA–79010, Ukraine,
3Kazimierz Wielki University, J. K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland

Received 11 September 2020; in final form 09 November 2020; accepted 17 November 2020; published online 10 December 2020

Investigations of the structure and free volume distribution for near-eutectic Bi-Zn alloys was carried out. X-ray diffraction and computer simulation methods for the structure studies of melts were used. As a result of the investigations, a considerable difference between the size of free volume within the first coordination sphere and its average values was established. It is assumed that the main reason for these differences is due to the peculiarities of the mechanism of dissolution of zinc in bismuth at its low concentrations, and the formation of chains of zinc atoms in the matrix of bismuth at higher zinc content in the melts.

Key words: liquid alloys, short range order structure, structure model, free volume

Full text


References
  1. N. Lazarus, C. D. Meyer, S. S. Bedair, H. Nochetto, I. M. Kierzewski, Smart Mater. Struct. 23, 085036 (2014);
    Crossref
  2. Xuelin Wang, Jing Liu, Micromachines 7, 206 (2016);
    Crossref
  3. T. Daeneke et al., Chem. Soc. Rev. 47, 4073 (2018);
    Crossref
  4. T. Massalsky, Binary Alloy Phase Diagrams (Ohio, American Society for Metals: Metalls Park, 1998).
  5. S. Tamaki, S. Takeda, S. Harada, Y. Waseda, E. Matsubara, J. Phys. Soc. Jpn. 55, 4296 (1986);
    Crossref
  6. W. Knoll, P. Lamparter, S. Steeb, Z. Naturforsch. 38a, 395 (1983);
    Crossref
  7. H Ueno et al., J. Phys.: Conf. Ser. 340, 012081 (2012);
    Crossref
  8. Md. Riad Kasem, G. M. Bhuiyan, Md. Helal Uddin Maruf, J. Chem. Phys. 143, 034503 (2015);
    Crossref
  9. Sung S. Kim, T. H. Sanders, Z. Metallkd. 94, 390 (2003);
    Crossref
  10. Y. Djaballah, L Bennour, F. Bouharkat, A. Belgacem-Bouzida, Modelling Simul. Mater. Sci. Eng. 13, 361 (2005);
    Crossref
  11. S. Mudry, Yu. Plevachuk, V. Sklyarchuk, A. Yaky\-movych, J. Non-Cryst. Solids 354, 4415 (2008);
    Crossref
  12. Peng Jia et al., J. Mol. Liq. 214, 70 (2016);
    Crossref
  13. D. T. Cromer, J. T. Waber, Acta Cryst. 18, 104 (1965);
    Crossref
  14. S. Mudry, I. Shtablavyi U. Liudkevych, Phys. Chem. Liq. 55, 254 (2017);
    Crossref
  15. R. L. McGreevy, J. Phys. Condens. Matter. 13, R877 (2001);
    Crossref
  16. R. L. McGreevy, M. A. Howe, Ann. Rev. Mater. Sci. 22, 217 (1992);
    Crossref
  17. Y. Waseda, The Structure of Non Crystalline Materials (McGraw-Hill, New York, 1980).
  18. S. I. Mudry, I. M. Shevernoga, Inorg. Mater. 48, 635 (2012);
    Crossref
  19. K. Okajima H. Sakao, Transact. Jpn Inst. Metals 23, 111 (1982);
    Crossref