Journal of Physical Studies 25(1), Article 1101 [12 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.1101

ELECTRIC FORM FACTORS OF NUCLEONS AND CHARGE DEUTERON FORM FACTOR

V. I. Zhaba 

Uzhgorod National University, Department of Theoretical Physics,
54, Voloshyn St., Uzhgorod, UA-88000, Ukraine,
e-mail: viktorzh@meta.ua

Received 30 April 2020; accepted 29 October 2020; published online 16 February 2021

The study reviews basic approximation dependences for the isoscalar electric form factors of the proton $G_{\rm Ep}$ and the neutron $G_{\rm EN}$. The peculiarities of their obtaining and subsequent application for approximation by experimental data are analyzed. The basic experimental data of nucleon electric form factors are described. Using the approximation dependences of this review, corresponding parameters were obtained for the electric form factors of the nucleons $G_{\rm Ep}$ and $G_{\rm EN}$. In most cases, they generally describe the experimental data fairly well. The best parameterizations for describing experimental data of the electric proton form factor $G_{\rm Ep}$ are polynomials and polynomial ratios. Experimental measurements of the electric neutron form factor $G_{\rm EN}$ are best described by the Galster parameterization. The quality of the approximation for the electric nucleon form factors is controlled by determining the charge radius of proton $r_{\rm Ep}$ and neutron $r_{\rm EN}$. According to the approximation dependences of the electric nucleon form factors and the deuteron wave functions in the coordinate representation for Reid93 and CD-Bonn potentials and DDM model, the deuteron charge form factor $G_{\rm C}(p)$ is calculated. The theoretical values of the form factor $G_{\rm C}(p)$ are compared with the experimental data of the leading collaborations and reviews. Depending on the choice of electric nucleon form factors, the secondary maximum for the deuteron charge form factor $G_{\rm C}(p)$ is located for Reid93 potential in the momentum range at $p=5.60$-5.80 fm$^{-1}$, for CD-Bonn potential at $p=6.00$-6.40 fm$^{-1}$ and for model DDM at $p=5.45$-5.65 fm$^{-1}$. The zero position is located at the momentum $p_{0}=4.60$ fm$^{-1}$ for Reid93 potential, $p_{0}=5.05$ fm$^{-1}$ for CD-Bonn potential and $p_{0}=4.45$ fm$^{-1}$ for DDM model. The numerical values of the root-mean-square charge $r_{\rm ch}$ and the structural $r_{\rm str}$ deuteron radius are in good agreement with the results of experimental and other theoretical data. Using the obtained parameters of approximation dependences for isoscalar nucleon electric form factors and known magnetic nucleon form factors, in further studies we can calculate the structure functions $A(p)$, $B(p)$, the components of tensor and vector deuteron polarizations $t_{ij}(p)$, and tensor analyzing power $A_{yy}$ and other polarization observables.

Key words: nucleon, deuteron, form factor, radius, wave function, approximation

Full text


References
  1. D. K. Hasell et al., Annu. Rev. Nucl. Part. Sci. 61, 409 (2011);
    Crossref
  2. R. Gilman, F. Gross, J. Phys. G. 28, R37 (2002);
    Crossref
  3. V. P. Ladygin et al., Eur. Phys. J. A 8, 409 (2000);
    Crossref
  4. M. P. Rekalo, E. Tomasi-Gustafsson, Phys. Rev. C 54, 3125 (1996);
    Crossref
  5. G. I. Gakh, A. G. Gakh, E. Tomasi-Gustafsson, Phys. Rev. C 90, 064901 (2014);
    Crossref
  6. G. I. Gakh, M. I. Konchatnij, N. P. Merenkov, J. Exp. Theor. Phys. 115, 212 (2012);
    Crossref
  7. D. Abbott et al., Eur. Phys. J. A 7, 421 (2000);
    Crossref
  8. E. Tomasi-Gustafsson, G. I. Gakh, C. Adamuscin, Phys. Rev. C 73, 045204 (2006);
    Crossref
  9. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, Phys. Rev. D 94, 116006 (2016);
    Crossref
  10. L. E. Marcucci et al., J. Phys. G 43, 023002 (2016);
    Crossref
  11. В. І. Жаба, Вісн. Львів. ун-ту. Сер. фіз. 56, 43 (2019);
    Crossref
  12. V. G. J. Stoks et al., Phys. Rev. C 49, 2950 (1994);
    Crossref
  13. J. J. de Swart et al., Few-Body Syst. Suppl. 8, 438 (1995);
    Crossref
  14. R. Machleidt, Phys. Rev. C 63, 024001 (2001);
    Crossref
  15. M. N. Platonova, V. I. Kukulin, Phys. Atom. Nucl. 73, 86 (2010);
    Crossref
  16. M. Gourdin, Nuovo Cim. 28, 533 (1963);
    Crossref
  17. D. Benaksas, D. Drickey, D. Frerejacque, Phys. Rev. 148, 1327 (1966);
    Crossref
  18. I. The et al., Phys. Rev. Lett. 67, 173 (1991);
    Crossref
  19. M. Garcon et al., Phys. Rev. C 49, 2516 (1994);
    Crossref
  20. D. Abbott et al., Phys. Rev. Lett. 84, 5053 (2000);
    Crossref
  21. M. Bouwhuis et al., Phys. Rev. Lett. 82, 3755 (1999);
    Crossref
  22. D. M. Nikolenko et al., Phys. Rev. Lett. 90, 072501 (2003);
    Crossref
  23. D. M. Nikolenko et al., Phys. Atom. Nucl. 73, 1322 (2010);
    Crossref
  24. С. А. Зеваков и др., препринт ИЯФ 2006-024 (2006).
  25. M. Kohl, Nucl. Phys. A 805, 361c (2008);
    Crossref
  26. C. Zhang et al., Phys. Rev. Lett. 107, 252501 (2011);
    Crossref
  27. B. Boden et al., Z. Phys. C: Part. Fields 49, 175 (1991);
    Crossref
  28. V. Punjabi et al., Eur. Phys. J. A 51, 79 (2015);
    Crossref
  29. A. Bekzhanov, S. Bondarenko, V. Burov, Nucl. Phys. B (Proc. Suppl.) 245, 65 (2013);
    Crossref
  30. A. V. Bekzhanov, S. G. Bondarenko, V. V. Burov, J. Exp. Theor. Phys. Lett. 99, 613 (2014);
    Crossref
  31. M.I. Haftel, L. Mathelitsch, H.F.K. Zingl, Phys. Rev. C 22, 1285 (1980);
    Crossref
  32. V.V. Burov et al., Europhys. Lett. 24, 443 (1993);
    Crossref
  33. C. Adamuscin et al., Nucl. Phys. Proc. Suppl. 245, 69 (2013);
    Crossref
  34. T-S. Cheng, L. S. Kisslinger, Nucl. Phys. A 457, 602 (1986);
    Crossref
  35. M. Garcon, J.W. van Orden, Adv. Nucl. Phys. 26, 293 (2001);
    Crossref
  36. S. Galster et al., Nucl. Phys. B 32, 221 (1971);
    Crossref
  37. F. Iachello, A.D. Jackson, A. Lande, Phys. Lett. B\textbf{ 43}, 191 (1973);
    Crossref
  38. M. Gari, W. Krumpelmann, Z. Phys. A 322, 689 (1985);
    Crossref
  39. J. J. Kelly, Phys. Rev. C 70, 068202 (2004);
    Crossref
  40. P. E. Bosted, Phys. Rev. C 51, 409 (1995);
    Crossref
  41. R. Bradford et al., Nucl. Phys. B (Proc. Suppl.) 159, 127 (2006);
    Crossref
  42. J. Friedrich, Th. Walcher, Eur. Phys. J. A 17, 607 (2003);
    Crossref
  43. S. I. Bilen'kaya, Yu. M. Kazarinov, L. I. Lapidus, Sov. Phys. J. Exp. Theor. Phys. 34, 1192 (1972).
  44. W. M. Alberico et al., Phys. Rev. C 79, 065204 (2009);
    Crossref
  45. E. Geis et al., Phys. Rev. Lett. 101, 042501 (2008);
    Crossref
  46. W. Bertozzi et al., Phys. Lett. B 41, 408 (1972);
    Crossref
  47. P. Lehmann et al., Phys. Rev. 126, 1183 (1962);
    Crossref
  48. B. Dudelzak et al., Nuovo Cim. 28, 18 (1963);
    Crossref
  49. L. N. Hand et al., Rev. Mod. Phys. 35, 335 (1963);
    Crossref
  50. W. Albrecht et al., Phys. Rev. Lett. 17, 1192 (1966);
    Crossref
  51. T. Janssens et al., Phys. Rev. 142, 922 (1966);
    Crossref
  52. W. Albrecht et al., Phys. Rev. Lett. 18, 1014 (1967);
    Crossref
  53. J. Litt et al., Phys. Lett. 31B, 40 (1970);
    Crossref
  54. Ch. Berger et al., Phys. Lett. 35B, 87 (1971);
    Crossref
  55. L. E. Price et al., Phys. Rev. D 4, 45 (1971);
    Crossref
  56. W. Bartel et al., Nucl. Phys. B 58, 429 (1973);
    Crossref
  57. K. M. Hanson et al., Phys. Rev. D 8, 753 (1973);
    Crossref
  58. P. N. Kirk et al., Phys. Rev. D 8, 63 (1973);
    Crossref
  59. J. J. Murphy et al., Phys. Rev. C 9, 2125 (1974);
    Crossref
  60. F. Borkowski et al., Nucl. Phys. B 93, 461 (1975);
    Crossref
  61. G. Hohler et al., Nucl. Phys. B 114, 505 (1976);
    Crossref
  62. G. G. Simon et al., Nucl. Phys. A 333, 381 (1980);
    Crossref
  63. P. E. Bosted et al., Phys. Rev. Lett. 68, 3841 (1992);
    Crossref
  64. L. Andivahis et al., Phys. Rev. D 50, 5491 (1994);
    Crossref
  65. R. C. Walker et al., Phys. Rev. D 49, 5671 (1994);
    Crossref
  66. M. E. Christy et al., Phys. Rev. C 70, 015206 (2004);
    Crossref
  67. I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005);
    Crossref
  68. J. C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010);
    Crossref
  69. J. C. Bernauer, Ph.D. thesis, Johannes Gutenberg University Mainz (2010).
  70. M. Mihovilovic et al., Phys. Lett. B 771, 194 (2017);
    Crossref
  71. E. B. Hughes et al., Phys. Rev. 139, B458 (1965);
    Crossref
  72. J. R. Dunning et al., Phys. Rev. 141, 1286 (1966);
    Crossref
  73. P. Stein et al., Phys. Rev. Lett. 16, 592 (1966);
    Crossref
  74. S. Platchkov et al., Nucl. Phys. A 510, 740 (1990);
    Crossref
  75. C. E. Jones-Woodward et al., Phys. Rev. C 44, R571 (1991);
    Crossref
  76. A. K. Thompson et al., Phys. Rev. Lett. 68, 2901 (1992);
    Crossref
  77. A. Lung et al., Phys. Rev. Lett. 70, 718 (1993);
    Crossref
  78. T. Eden et al., Phys. Rev. C 50, R1749 (1994);
    Crossref
  79. M. Meyerhoff et al., Phys. Lett. B 327, 201 (1994);
    Crossref
  80. E. E. W. Bruins et al., Phys. Rev. Lett. 75, 21 (1995);
    Crossref
  81. J. Becker et al., Eur. Phys. J. A 6, 329 (1999);
    Crossref
  82. C. Herberg et al., Eur. Phys. J. A 5, 131 (1999);
    Crossref
  83. M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999);
    Crossref
  84. I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999);
    Crossref
  85. D. Rohe et al., Phys. Rev. Lett. 83, 4257 (1999);
    Crossref
  86. J. Golak et al., Phys. Rev. C 63, 034006 (2001);
    Crossref
  87. H. Zhu et al., Phys. Rev. Lett. 87, 081801 (2001);
    Crossref
  88. J. Bermuth et al., Phys. Lett. B 564, 199 (2003);
    Crossref
  89. R. Madey et al., Phys. Rev. Lett. 91, 122002 (2003);
    Crossref
  90. G. Warren et al., Phys. Rev. Lett. 92, 042301 (2004);
    Crossref
  91. G. I. Glazier et al., Eur. Phys. J. A 24, 101 (2005);
    Crossref
  92. B. Plaster et al., Phys. Rev. C 73, 025205 (2006);
    Crossref
  93. S. Riordan et al., Phys. Rev. Lett. 105, 262302 (2010);
    Crossref
  94. B. S. Schlimme, Pros Sci. QNP2012 57, 097 (2012);
    Crossref
  95. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, Phys. Rev. D 97, 054011 (2018);
    Crossref
  96. C. Patrignani et al., Chin. Phys. C 40, 100001 (2016);
    Crossref
  97. F. Cap, W. Gröbner, Nuovo Cim. 1, 1211 (1955);
    Crossref
  98. V. I. Zhaba, J. Phys. Stud. 20, 3101 (2016);
    Crossref
  99. W. Plessas V. Christian, R.F. Wagenbrunn, Few-Body Syst. Suppl. 9, 429 (1995);
    Crossref
  100. А. Ф. Крутов, Теор. физ. 3, 5 (2002).
  101. N. A. Khokhlov, A. A. Vakulyuk, Phys. Atom. Nucl. 78, 92 (2015);
    Crossref
  102. H. Arenhovel, F. Ritz, T. Wilbois, Phys. Rev. C 61, 034002 (2000);
    Crossref
  103. A. J. Buchmann, H. Henning, P.U. Sauer, Few-Body Systems 21, 149 (1996);
    Crossref
  104. B. Rezaei, A. Dashtimoghadam, J. Theor. Appl. Phys. 8, 203 (2014);
    Crossref
  105. V. А. Babenko, N. М. Petrov, Phys. Atom. Nucl. 71, 1730 (2008);
    Crossref
  106. I. Sick, D. Trautmann, Phys. Lett. B 375, 16 (1996);
    Crossref
  107. I. Sick, D. Trautmann, Nucl. Phys. A 637, 559 (1998);
    Crossref
  108. T. Herrmann, R. Rosenfelder, Eur. Phys. J A 2, 29 (1998);
    Crossref
  109. M. Kalinowski, Phys. Rev. A 99, 030501(R) (2019);
    Crossref
  110. A. A. Filin et al., Phys. Rev. Lett. 124, 082501 (2020);
    Crossref
  111. D. R. Phillips, J. Phys. G: Nucl. Part. Phys. 34, 365 (2007);
    Crossref