Journal of Physical Studies 25(2), Article 2202 [7 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.2202

WAVE NUCLEAR BURNING IN SPHERICAL GEOMETRY

M. R. Shcherbyna , V. O. Tarasov , V. P. Smolyar 

Odesa National Polytechnic University,
Department of Theoretical and Experimental Nuclear Physics,
1, Shevchenko Ave., 65044 Odesa, Ukraine,
e-mail: shcherbeenamisha@gmail.com

Received 18 January 2021; in final form 12 February 2021; accepted 11 March 2021; published online 25 May 2021

Every year, human energy consumption is constantly growing, so the role of nuclear energy will only increase over time. However, the reserves of ${^{235}U}$, which is the main fissile nuclide in nuclear energy, are limited and should be depleted in the coming decades. But this problem can be avoided if we use the huge reserves of ${^{238}U}$. This article aims to investigate the feasibility of implementing one of the regimes of a fundamentally new and not yet practically implemented process in nuclear energy – the nuclear traveling wave in a uranium-plutonium medium, where plutonium-239 is formed from ${^{238}U}$.

A nuclear traveling wave may form in a uranium-plutonium medium as a moving wave of plutonium-239 fission. This paper considers the possibility of the formation of such a wave in a spherical uranium-plutonium medium, and the study is conducted in spherical geometry.

A majority of works studying the traveling wave mode of nuclear fission consider 1D or cylindrical 3D geometry. There are only a few works devoted to the study of this problem in spherical geometry. It should also be noted that the nuclear reactions considered in the present paper involve the participation of epithermal neutrons, which also significantly distinguishes our work from previous works on this topic, because most of them consider thermal neutrons.

Since this problem is spherically symmetric, it allowed us to replace 3D modeling of the whole sphere with 1D modeling along the radius of this sphere. We have developed kinetic equations describing a nuclear traveling wave and modeled it by numerically solving these kinetic equations. An improved explicit-implicit numerical calculation scheme was used, which allowed us to increase the temporal step of the simulation.

Key words: nuclear burning wave, modeling, epithermal neutrons, uranium-plutonium medium.

Full text


References
  1. L. Feoktistov, Dokl. Akad. Nauk SSSR 309, 4 (1989).
  2. E. Teller, M. Ishikawa, L. Wood, R. Hyde, J. Nuckolls, in Proc. of the International Conference on Emerging Nuclear Energy Systems, ICENES'96, Obninsk, Russian Federation, p. 123 (1996).
  3. Xue-Nong Chen, Werner Maschek, Ann. Nucl. Energy 32, 1377 (2005);
    Crossref
  4. H. Sekimoto, Prog. Nucl. Energy 47, 91 (2005);
    Crossref
  5. Yu. P. Melnik, V. V. Pylypenko, A. S. Fomin, S. P. Fomin, N. F. Shulga, At. Enegr. 107, 288 (2009).
  6. H. Sekimoto, K. Ryu, in Proc. of PHYSOR 2010 — Advances in Reactor Physics to Power the Nuclear Renaissance Pittsburgh, May 9–14 (Pennsylvania, USA, 2010).
  7. A. G. Osborne, M. R. Deinert, Ann. Nucl. Energy 62 269 (2013);
    Crossref
  8. S. Qvist, J. Hou, E. Greenspan, Ann. Nucl. Energy 85, 93 (2015);
    Crossref
  9. V. D. Rusov et al., Sci. Technol. Nucl. Install. 2015, 703069 (2015);
    Crossref
  10. V. D. Rusov et al., Prog. Nucl. Energy 83 105 (2015);
    Crossref
  11. V. V. Urbanevich, I. V. Sharph, V. A. Tarasov, V. D. Rusov, Eur. Phys. J. Nucl. Sci. Technol. 6 50 (2020);
    Crossref
  12. A. O. Kakaev, V. O. Tarasov, S. A. Chernezhenko, V. D. Rusov, V. O. Sova, J. Phys. Stud. 24 1207 (2020);
    Crossref
  13. Yu. Y. Leleko, V. V. Gann, A.V. Gann., Probl. At. Sci. Technol. 5, 18 (2019).
  14. V. Gann, Yu. Leleko, G. Gann, in Proc. of the International Conference Nuclear Energy for New Europe, September 9-12, 2019 (Portorož, Slovenia,2019), p. 104.
  15. Yu. Leleko, V. Gann, in Proc. of the Scientific and Technical International Conference "Computer Modelling in High Tech (CMHT-2020)" (Kharkiv, Ukraine, 2020), p. 180.
  16. Yu. Leleko, V. Gann, Probl. At. Sci. Technol. 2, 16 (2020).
  17. G. Bartolomey, G. Bat', V. Baibakov, M. Altukhov, Basic Theory and Methods of Nuclear Power Installation Calculations (Energoatomizdat, Moscow, 1989).
  18. V. I. Vladimirov, Practical Problems of Nuclear Reactor Operation (Energoatomizdat, Moscow, 1986).
  19. A. I. Akhiezer, I. Ya. Pomeranchuk, Introduction to the Theory of Multiplicating Systems (Reactors) (IzdAT, Moscow, 2002).
  20. A. I. Akhiezer, D. P. Belozorov, F. S. Rofe-Beketov, L. N. Davydov, Z. A. Spolnik, Probl. At. Sci. Technol. 6, 276 (2001).