Journal of Physical Studies 25(2), Article 2601 [5 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.2601

MECHANICAL PROPERTIES OF CERAMICS BASED ON (Cu1–xAgx)7SiS5I SOLID SOLUTIONS

V. S. Bilanych , I. O. Shender , K. V. Skubenych, A. I. Pogodin , I. P. Studenyak

Uzhhorod National University,
46, Pidhirna St., Uzhhorod, UA–88000, Ukraine

Received 04 December 2020; in final form 31 March 2021; accepted 03 April 2021; published online 03 June 2021

(Cu$_{1-x}$Ag$_x$)$_7$SiS$_5$I-based ceramics were prepared by pressing and sintering from the micro- and nanopowders. The ceramic samples were investigated using microstructural analysis. The microhardness was measured using the method of pressing the Vickers pyramid. It has been shown that the microhardness of (Cu$_{1-x}$Ag$_x$)$_7$SiS$_5$I-based ceramics essentially less ($\sim$ 50%) than that of the single crystals, but the tendency to the microhardness decrease with a decrease of the copper content at the Cu$^+→$Ag$^+$ cationic substitution is observed both for single crystals and ceramics. With the growth of microcrystallites' size in the range from 3 μm to 12 μm, the microhardness of ceramics increases. The compositional dependences and size effects of microhardness, electrical conductivity and density of (Cu$_{1-x}$Ag$_x$)$_7$SiS$_5$I-based ceramics are analysed.

Key words: argyrodite; superionic conductor; ceramic; microhardness; ionic conductivity

Full text


References
  1. W. F. Kuhs, R. Nitsche, K. Scheunemann, Mater. Res. Bull. 14, 241 (1979);
    Crossref
  2. T. Nilges, A. Pfitzner, Z. Kristallogr. 220, 281 (2005);
    Crossref
  3. I. P. Studenyak et al., Solid State Ion. 345, 115183 (2020);
    Crossref
  4. I. P. Studenyak et al., Semicond. Phys. Quantum Electron. Optoelectron. 23(3), 260 (2020);
    Crossref
  5. J. B. Quinn, G. D. Quinn, J. Mater. Sci. 32, 4331 (1997);
    Crossref
  6. P. Filho, T. Cavalcante, V. de Albuquerque, J. Tavares, J. Test. Eval. 38, 88 (2010);
    Crossref
  7. M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (John Wiley \& Sons, Inc., Hoboken, New Jersey, 2008);
    Crossref
  8. R. A. Huggins, Ionics 8, 300 (2002);
    Crossref
  9. V. S. Bilanych, K. V. Skubenych, M. I. Babilya, A. I. Pogodin, I. P. Studenyak, Ukr. J. Phys. 65, 453 (2020);
    Crossref
  10. A. I. Pogodin et al., Sci. Herald Uzhhorod Univ. Ser. Phys. 43, 9 (2018);
    Crossref
  11. Yu. I. Golovin, Phys. Solid State 50, 2205 (2018);
    Crossref
  12. A. S. Tana, F. H. Hammad, Phys. Status Solidi A 119, 455 (1990);
    Crossref