Journal of Physical Studies 25(3), Article 3704 [11 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.3704

CALCULATION OF THE VIBRATIONAL SPECTRA OF AgGaS2 CRYSTAL WITH CHALCOPYRITE STRUCTURE

M. Ya. Rudysh{1,2,3,4} , A. I. Kashuba{4} , P. A. Shchepanskyi{1,2,4} , R. Yu. Petrus{4} , V. Yo. Stadnyk{1} , M. Piasecki2 

1Ivan Franko National University of Lviv, 19, Drahomanov St., Lviv, UA-79005, Ukraine
2Jan Długosz University in Częstochowa, 13/15, Armii Krajowej Al., Częstochowa, PL-42-200, Poland
3Lesya Ukrainka Volyn National University, 9, Potapov St., Lutsk, UA-43025, Ukraine
4Lviv Polytechnic National University, 12, Bandera St., Lviv, UA-79013, Ukraine

Received 10 March 2021; in final form 23 May 2021; accepted 31 May 2021; published online 07 August 2021

Ternary semiconductor materials with a chalcopyrite structure belonging to the I-III-VI$_2$ group (where I = Ag, Cu; III = Al, Ga, In; VI = S, Se, Te) attract considerable attention due to interesting physical properties. The structural, electronic and optical properties of these crystals make them promising materials for a number of applications in nonlinear optics devices, detectors, photodiodes, solar cells, etc. In this work, the theoretical first-principle calculations of the structural, vibrational and dielectric properties of an AgGaS$_2$ crystal with a chalcopyrite structure are performed. We report the results of the calculations of the phonon band structure $ω(q)$, total and partial density of phonon states $N(ω)$, infrared spectra and Raman spectra, the Born effective charge tensor for each atom, and dielectric constants (for $ω = 0$ and $ω → 0$) using the theory of perturbation of the density functional. Theoretical-group analysis of vibrational modes is carried out and the classification of vibrations in the phonon spectra of the investigated compound is performed.

The results of the phonons calculations showed the stability of the crystal structure of the studied compound. It follows from the calculations of the phonon spectrum that there is a significant anisotropy of low-frequency acoustic branches of vibrations. There is also a presence of low-frequency optical branches that interact with acoustic ones. It was found that the density of states can be divided into three parts – low-frequency, medium-frequency and high-frequency regions, which are formed by the oscillations of Ag, Ga and S atoms, respectively. The calculated and identified frequencies of vibrations modes in the center of the Brillouin zone ($Γ$ point) showed good agreement with the available experimental data on IR and Raman spectra and theoretical data obtained using the Phonon program. A symmetric classification of vibrational modes for a crystal using group theory is performed. Estimation of the Born effective charge tensor and dielectric constants in an AgGaS$_2$ crystal indicates their significant anisotropy.

Key words: AgGaS$_2$, DFPT, phonon, linear response theory, Born effective charges, vibrational spectra

Full text


References
  1. National Renewable Energy Laboratory, Best Research-cell Efficiencies (United States of America: National Renewable Energy Laboratory, 2020).
  2. R. S. Feigelson, R. K. Route, Opt. Eng. 26, 262113 (1987);
    Crossref
  3. J.-J. Zondy, D. Touahri, O. Acef, J. Opt. Soc. Am. B 14, 2481 (1997);
    Crossref
  4. О. G. Vlokh, A. V. Caryk, Visn. Lviv un-tu. Phys. Ser. 16, 13 (1982).
  5. R. Smith, J. Phys. Colloques. 36, C3-89 (1975);
    Crossref
  6. S. M. Asadov, S. N. Mustafaeva, D. T. Guseinov, K. I. Kelbaliev, Tech. Phys. 63, 546 (2018);
    Crossref
  7. S. M. Asadov, S. N. Mustafaeva, D. T. Guseinov, Inorg. Mater. 53, 457 (2017);
    Crossref
  8. M. Akdogan, R. Eryigit, J. Phys.: Condens. Matter. 14, 7493 (2002);
    Crossref
  9. C. Parlak, R. Eryigt, Phys. Rev. B 73, 245217 (2006);
    Crossref
  10. Y. Yu, Y. H. Shen, J. Deng, X. L. Zheng, G. D. Zhao, Chalcogenide Lett. 14, 447 (2017).
  11. R. Eryigit, C. Parlak, R. Erygit, Eur. Phys. J. B 33, 251 (2003);
    Crossref
  12. J. Lazewski, K. Parrlinski, B. Hennion, R. Fouret, J. Phys.: Condens. Matter. 11, 9665 (1999);
    Crossref
  13. Y. Yu, G. D. Zhao, X. L. Zheng, Z. R. Wei, Chalcogenides Lett. 13, 15 (2016).
  14. M. Ya. Rudysh et. al., Infrared Phys. Technol. 111, 103476 (2020);
    Crossref
  15. J. Lazewski, K. Parlinski, J. Phys.: Condens. Matter. 11, 9673 (1999).
  16. Y. Cui et. al., Solid State Commun. 150, 1686 (2010);
    Crossref
  17. D. J. Lockwood, H. Montgomery, J. Phys. C: Solid State Phys. 8, 324119 (1975);
    Crossref
  18. D. Lockwood, H. Montgomery, J. Phys. Colloques 36, C3-183 (1975);
    Crossref
  19. H. Matsushita, S. Endo, T. Irie, Jpn. J. Appl. Phys. 31, 18 (1992);
    Crossref
  20. J. Łażewski, K. Parlinski, J. Chem. Phys. 114, 6734 (2001);
    Crossref
  21. G. D. Holah, J. S. Webb, H. Montgomery, J. Phys. C: Solid State Phys. 7, 3875 (1974);
    Crossref
  22. S. J. Clark et. al., Z. Krist. – Cryst. Mater. 220, 567 (2005);
    Crossref
  23. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964);
    Crossref
  24. W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965);
    Crossref
  25. D. R. Hamann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979);
    Crossref
  26. D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 45, 566 (1980);
    Crossref
  27. J. P. Perdew, A. Zunger, Phys. Rev. B. 23, 5048 (1981);
    Crossref
  28. H. J. Monkhorst, J. D. Pack, Phys. Rev. B. 13, 5188 (1976);
    Crossref
  29. S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987);
    Crossref
  30. C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970);
    Crossref
  31. R. Fletcher, Comp. J. 13, 317 (1970);
    Crossref
  32. D. Goldfarb, Math. Comput. 24, 23 (1970);
    Crossref
  33. D. F. Shanno, Math. Comput. 24, 647 (1970);
    Crossref
  34. J. Zhang et. al., Adv. Mater. 26, 3848 (2014);
    Crossref
  35. G. Brandt, A. Rauber, J. Schneider, Solid State Commun. 12, 481 (1973).
  36. A. Majchrowski et. al., J. Mater. Sci. 53, 1217 (2018);
    Crossref
  37. P. A. Shchepanskyi, V. Yo. Stadnyk, M. Ya. Rudysh, R. S. Brezvin, B. V. Andrievskii, Opt. Spectroscop. 125, 353 (2018);
    Crossref
  38. M. Chrunik et. al., Curr. Appl. Phys. 17, 1100 (2017);
    Crossref
  39. M.Ya. Rudysh et. al., J. Alloys Compd. 826, 154232 (2020);
    Crossref
  40. I. V. Semkiv, H. A. Ilchuk, A. I. Kashuba, R. Yu. Petrus, V. V. Kusnezh, J. Nano- Electron. Phys. 8, 03005 (2016);
    Crossref
  41. M. Ya. Rudysh et. al., Physica B: Phys. Cond. Matter 528, 37 (2018);
    Crossref
  42. Г. Н. Жижин, Б. Н. Маврин, В. Ф. Шабанов, Оптические колебательные спектры кристаллов (Наука, Москва, 1984).
  43. М. Ya. Rudysh et. al., J. Appl. Spectrosc. 85, 896 (2018);
    Crossref
  44. X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997);
    Crossref
  45. D. Porezag, M. R. Pederson, Phys. Rev. B 54 (1996) 7830;
    Crossref
  46. B. Zhou, Q. Su, D.-Y. He, Chin. Phys. B 18, 4988 (2009);
    Crossref
  47. Y. Yu et. al., Chin. Phys. B 26, 046302 (2017);
    Crossref
  48. X. Zhao, D. Vanderbilt, Phys. Rev. B 65, 075105 (2002);
    Crossref
  49. P. Paufler, Landolt-Börnstein. New Series (Springer, Berlin, 1979);
    Crossref