Journal of Physical Studies 25(4), Article 4301 [17 pages] (2021)
DOI: https://doi.org/10.30970/jps.25.4301

NEW BOUND-STATE SOLUTIONS OF THE DEFORMED KLEIN–GORDON AND SCHRÖDINGER EQUATIONS FOR ARBITRARY L-STATE WITH THE MODIFIED EQUAL VECTOR AND SCALAR MANNING-ROSEN PLUS A CLASS OF YUKAWA POTENTIALS IN RNCQM AND NRNCQM SYMMETRIES

Abdelmadjid Maireche 

Laboratory of Physics and Material Chemistry, Physics department, Sciences Faculty, University of M'sila
BP 239 Chebilia-M'sila, Algeria
abdelmadjid.maireche@univ-msila.dz

Received 30 June 2021; in final form 14 July 2021; accepted 19 August 2021; published online 19 November 2021

In this work, we employed the elegant tool of Bopp's shift and standard perturbation theory methods to obtain a new relativistic and nonrelativistic approximate bound state solution of the deformed Klein-Gordon and deformed Schrödinger equations using the modified equal vector scalar Manning-Rosen plus a class of Yukawa potentials (DVSMCY-Ps, in short) model. Furthermore, we have employed the improved approximation to the centrifugal term for some selected diatomic molecules, such as N$_{2}$, I$_{2}$, HCl, CH, LiH, and CO, in the symmetries of extended quantum mechanics to obtain the approximate solutions. The relativistic shift energy $Δ E_{\rm mcy}^{\rm tot}\left( n,δ ,η ,b,A,V_{0},V_{0}',Θ ,σ ,χ ,j,l,s,m\right) $ and the perturbative nonrelativistic corrections $Δ E_{\rm mcy}^{\rm nr}\left( n,δ ,η ,b,A,V_{0},V_{0}',Θ ,σ ,χ ,j,l,s,m\right) $ appeared as a function of the parameters $\left( δ ,η ,b,A,V_{0},V_{0}'\right) $, the parameters of noncommutativity $\left( Θ ,σ ,χ \right) $, in addition to the atomic quantum numbers $\left( n,j,l,s,m\right) $. In both relativistic and nonrelativistic problems, we show that the corrections to the spectrum energy are smaller than the main energy in the ordinary cases of relativistic quantum mechanics and nonrelativistic quantum mechanics. A straightforward limit of our results to ordinary quantum mechanics shows that the present result under DVSMCY-Ps is consistent with what is obtained in the literature. In the new symmetries of noncommutative quantum mechanics, it is not possible to get exact analytical solutions for $l=0$, and $l\neq 0$ can only be solved approximately. We have observed that the DKGE under the DVSMCY-Ps model has a physical behavior similar to the Duffin-Kemmer equation for meson with spin-1, it can describe a dynamic state of a particle with spin-1 in the symmetries of relativistic noncommutative quantume mechanics.

Key words: Klein–Gordon equation, Schrödinger equation, Manning–Rosen potential, class of Yukawa potentials, the diatomic molecules, noncommutative geometry, Bopp's shift method and star products.

Full text


References
  1. A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathematical Physics (Birkhäuser, Basel, 1988).
  2. B. I. Ita, et al., Sri Lankan J. Phys. 19, 37 (2018);
    Crossref
  3. H. Louis et al., Eur. Phys. J. Plus 134, 315 (2019);
    Crossref
  4. M. X. Shao et al., Int. J. Theor. Phys. 48, 36 (2009);
    Crossref
  5. C. L. Pekeris, Phys. Rev. 45, 98 (1934);
    Crossref
  6. R. L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976);
    Crossref
  7. B. H. Yazarloo et al., Eur. Phys. J. Plus 127, 51 (2012);
    Crossref
  8. S. H. Dong et al., Int. J .Mod. Phys. E 16, 189 (2007);
    Crossref
  9. M. F. Manning et al., Phys. Rev. 44, 951 (1933);
    Crossref
  10. M. F. Manning, N. Rosen, Phys. Rev. 44, 953 (1933);
    Crossref
  11. M. F. Manning, J. Chem. Phys. 3, 136 (1935);
    Crossref
  12. M. F. Manning, Phys. Rev. 48, 161 (1935);
    Crossref
  13. B. J. Falaye et al., Can. J. Phys. 91, 98 (2013);
    Crossref
  14. S. H. Dong, J. García-Ravelo, Phys. Scr. 75, 307 (2007);
    Crossref
  15. S. M. Ikhdair, Phys. Scr. 83, 015010 (2011);
    Crossref
  16. N. Hatami, M. R. Setare, Indian J. Phys. 91, 1229 (2017);
    Crossref
  17. G. F. Wei et al., Cent. Eur. J. Phys. 7, 175 (2009);
    Crossref
  18. G. F. Wei, S. H. Dong, Phys. Lett. A 373, 49 (2008);
    Crossref
  19. M. K. Bahar, F. Yasuk, Few-Body Syst. 53, 515 (2012);
    Crossref
  20. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).
  21. E. R. Vrscay, Phys. Rev. A 33, 1433 (1986);
    Crossref
  22. J. M. Ugalde et al., Phys. Rev. A 56, 1642 (1997);
    Crossref
  23. J. P. Gazeau, A. Maquet, Phys. Rev. A 20, 727 (1979);
    Crossref
  24. H. Totsuji, J. Phys. Soc. Jpn. 31, 584 (1971);
    Crossref
  25. C. B. Smith, Phys. Rev. A 134, 1235 (1964)
    Crossref
  26. G. M. Harris, Phys. Rev. 125, 1131 (1962);
    Crossref
  27. J. McEnnan, L. Kissel, R. H. Pratt, Phys. Rev. A 13, 532 (1976);
    Crossref
  28. C. H. Mehta, S. H. Patil, Phys. Rev. A 17, 34 (1978);
    Crossref
  29. R. Dutt, Y. P. Varshni, Z. Phys. Atom. Nucl. 313, 143 (1983).
    Crossref
  30. T. O. Magu et al., J. Niger. Assoc. Math. Phys. 42, 1 (2017).
  31. H. Louis et al., Phys. Sci. Int. J. IJCPS 7, 33 (2018);
    Crossref
  32. A. I. Ahmadov et al., Phys. Lett. A 384, 126372 (2020);
    Crossref
  33. S. Capozziello et al., Int. J. Theor. Phys. 39, 15 (2000);
    Crossref
  34. S. Doplicher et al., Phys. Lett. B 331, 39 (1994);
    Crossref
  35. E. Witten, Phys. Today 49, 24 (1996);
    Crossref
  36. A. Kempf et al., Phys. Rev. D 52, 1108 (1995);
    Crossref
  37. F. Scardigli, Nuovo Cim. B 110, 1029 (1995);
    Crossref
  38. R. J. Adler, D. I. Santigo, Mod. Phys. Lett. A 14, 1371 (1999);
    Crossref
  39. T. Kanazawa et al., Eur. Phys. J. C 79, art. 95 (2019);
    Crossref
  40. F. Scardigli, Phys. Lett. B 452, 39 (1999);
    Crossref
  41. P. M. Ho, H. C. Kao, Phys. Rev. Lett. 88, 151602 (2002);
    Crossref
  42. P. Gnatenko, Phys. Rev. D 99, 026009 (2019);
    Crossref
  43. O. Bertolami et al., Mod. Phys. Lett. A 21, 795 (2006);
    Crossref
  44. A. Connes, M. R. Douglas, A. Schwarz, J. High Energy Phys. 1998, 003
    Crossref
  45. A. Maireche, Afr. Rev. Phys. 15, 1 (2020); http://lamp.ictp.it/index.php/aphysrev/article/view/1777/618
  46. A. Maireche, Int. J. Geom. Meth. Mod. Phys. 17, 2050067 (2020);
    Crossref
  47. A. Maireche, J. Nano- Electron. Phys. 9, 03021 (2017);
    Crossref
  48. A. Maireche, Int. Front. Sci. Lett. 11, 29 (2017);
    Crossref
  49. A. Maireche, Few-Body Syst. 61, 30 (2020);
    Crossref
  50. A. Maireche, Ukr. J. Phys. 65(11), 987 (2020).
    Crossref
  51. A. Maireche, Int. Lett. Chem. Phys. Astron. 76, 1 (2017);
    Crossref
  52. A. Maireche, To Phys. J. 4, 16 (2019); https://purkh.com/index.php/tophy/article/view/521
  53. J. Gamboa, M. Loewe, J. C. Rojas, Phys. Rev. D 64, 067901 (2001);
    Crossref
  54. E. F. Djemaï, H. Smail, Commun. Theor. Phys. 41, 837 (2004);
    Crossref
  55. Y. Yi et al., Chin. Phys. C 34, 543 (2010);
    Crossref
  56. O. Bertolami, P. Leal, Phys. Lett. B 750, 6 (2015).
    Crossref
  57. O. Bertolami et al., Phys. Rev. D 72, 025010 (2005);
    Crossref
  58. J. Zhang, Phys. Lett. B 584, 204 (2004);
    Crossref
  59. M. Chaichian et al., Phys. Rev. Lett. 86, 2716 (2001);
    Crossref
  60. A. Maireche, J. Nano- Electron. Phys. 11, 04024 (2019);
    Crossref
  61. A. Maireche, NanoWorld J. 1(4), 122 (2016);
    Crossref
  62. M. A. De Andrade, C. Neves, J. Math. Phys. 59, 012105 (2018);
    Crossref
  63. E. M. C. Abreu et al., Int. J. Mod. Phys. A 21, 5359 (2006);
    Crossref
  64. E. M. C. Abreu et al., Int. J. Mod. Phys. A 27, 1250053 (2012);
    Crossref
  65. L. Mezincescu, preprint arXiv: hep-th/0007046v2 (2000).
  66. J. Wang, K. Li, J. Phys. A 40, 2197 (2007);
    Crossref
  67. K. Li, J. Wang, Eur. Phys. J. C 50, 1007 (2007);
    Crossref
  68. A. Maireche, Sri Lankan J. Phys. 21, 11 (2020);
    Crossref
  69. A. Maireche, J. Nano- Electron. Phys. 10, 06015 (2018);
    Crossref
  70. P. M. Morse, Phys. Rev. 34, 57 (1929);
    Crossref
  71. P. O. Amadi et al., Rev. Mex. Fís. 66, 742 (2020);
    Crossref
  72. A. Maireche, Mod. Phys. Lett. A 35, 2050015 (2020);
    Crossref
  73. A. Maireche, To Phys. J. 3, 186 (2019); https://purkh.com/index.php/tophy/article/view/489
  74. A. Maireche, Afr. Rev Phys. 15, 19 (2020); http://lamp.ictp.it/index.php/aphysrev/article/view/1779/620
  75. H. Motavalli, A. R. Akbarieh, Mod. Phys. Lett. A 25, 2523 (2010);
    Crossref
  76. M. Darroodi, H. Mehraban, H. Hassanabadi, Mod. Phys. Lett. A 33, 1850203 (2018);
    Crossref
  77. A. Saidi, M.B. Sedra, Mod. Phys. Lett. A 35, 2050014 (2019);
    Crossref
  78. A. Maireche, Sri Lankan J. Phys. 22, 1 (2021);
    Crossref
  79. A. Maireche, Lat. Am. J. Phys. Educ. 14, 3310 (2020).
  80. L. Gouba et al., Int. J. Mod. Phys. A 31, 1630025 (2016);
    Crossref
  81. F. Bopp, Ann. Inst. Henri Poincaré 15, 81 (1956).
  82. M. Badawi et al., J. Phys. B 5, L157 (1972);
    Crossref
  83. J. L. Basdevant, Mécanique quantique (Ellipses, 1986) [in French].
  84. S. H. Dong, W. C. Qiang, G. H. Sun, V. B. Bezerra, J. Phys. A 40, 10535 (2007);
    Crossref
  85. Y. Zhang, Phys. Scr. 78, 015006 (2008);
    Crossref
  86. K. Bencheikh et al., Phys. Rev. A 89, 063620 (2014);
    Crossref
  87. S. Medjedel, K. Bencheikh, Phys. Lett. A 383, 1915 (2019);
    Crossref
  88. A. Maireche, Rev. Mex. Fís. 67, 050702 (2021);
    Crossref
  89. B. I. Ita et al., Bulg. J. Phys. 45, 323 (2018).
  90. K. P. Gnatenko, V. M. Tkachuk, Europhys. Lett. 127, 20008 (2019);
    Crossref
  91. K. P. Gnatenko, V. M. Tkachuk, Int. J. Mod. Phys. A 33, 1850037 (2018);
    Crossref
  92. K. P. Gnatenko, Phys. Lett. A 377, 3061 (2013);
    Crossref
  93. A. Maireche, J. Phys. Stud. 25, 1002 (2021);
    Crossref