Journal of Physical Studies 26(1), Article 1101 [6 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.1101

FINE STRUCTURE OF THE PROTON–PROTON AND ANTIPROTON–PROTON DIFFRACTION CONE AT LHC ENERGIES

N. Bence{1} , I. Szanyi{2,3,4} , A. Lengyel{5} 

{1}Uzhhorod National University, 14, Universytets'ka St., Uzhhorod,
{2}Wigner RCP, POB 49, Budapest, 1525, Hungary,
{3}Eötvös University, Pázmány P. s. 1/A, Budapest, 1117, Hungary,
{4}MATE Institute of Technology, Károly Róbert Campus, H-3200 Gyöngyös, 36, Mátrai St., Hungary,
{5}Institute of Electron Physics of NAS of Ukraine, 21, Universytets'ka St., Uzhhorod,
e-mails: bencenorbert007@gmail.com, istvan.szanyi@cern.ch, alexanderlengyel39@gmail.com

Received 17 November 2021; in final form 21 December 2021; accepted 10 January 2022; published online 23 March 2022

The local nuclear curvature $C(s,t)$ as a derivative of local nuclear slope $B(s,t)$ is reconstructed from the experimental differential cross-section of $pp$ and $\bar pp$ elastic scattering for TeV energies in the small-$|t|$ region where the non-exponential behavior of the diffraction cone, i. e. the ‟break” phenomenon is clearly visible. Predictions for $C(s,t)$ are investigated in several Pomeron models. The extreme sensitivity of the local nuclear curvature for the choice of a Pomeron model is emphasized. Only some of them predict a $C(s,t=0)$ or $\langle C(s)\rangle$ which decreases with energy and changes sign at very large energy.

Key words: Pomeron, Odderon, asymptopia, pp and $\bar pp$ elastic scattering, local nuclear curvature, local nuclear slope.

Full text


References
  1. G. Antchev et al. (TOTEM Collaboration), Nucl. Phys. B 899, 527 (2015);
    Crossref
  2. G. Antchev et al. (TOTEM Collaboration), Eur. Phys. J. C 79, 785 (2019);
    Crossref
  3. G. Antchev et al. (TOTEM Collaboration), Eur. Phys. J. C 79, 881 (2019);
    Crossref
  4. M. M. Block, L. Durand, P. Ha, F. Halzen, Phys. Rev. D 93, 114009 (2016);
    Crossref
  5. J. E. Kontros, A. I. Lengyel, Ukr. Fiz. Zh. 40, 263 (1995).
  6. P. Desgrolard, J. Kontros, A. I. Lengyel, E. S. Martinov, Nuovo Cim. 110A, 615 (1997); https://arxiv.org/abs/hep-ph/9707258
  7. M. M. Block, B. N. Cahn, Rev. Mod. Phys. 57, 563 (1985);
    Crossref
  8. J. Pumplin, Phys. Lett. В. 276, 5517 (1992);
    Crossref
  9. L. Jenkovszky, I. Szanyi, Chung-I Tan, Eur. Phys. J. A 54, 116 (2018);
    Crossref
  10. G. Barbiellini et al., Phys. Lett. B 39, 663 (1972);
    Crossref
  11. N. Bence, A. I. Lengyel, Z. Z. Tarics, Sci. Herald Uzhhorod Univ. Ser. Phys. 45, 124 (2019);
    Crossref
  12. M. Bozzo et al. (UA4 Collaboration), Phys. Lett. 147B, 385 (1984);
    Crossref
  13. D. Bernard et al. (UA4 Collaboration), Phys. Lett. 198B, 583 (1987);
    Crossref
  14. ATLAS Collabortion, Nucl. Phys. B. 889, 486 (2014);
    Crossref
  15. N. A. Amos et al. (E-710 Collaboration), Phys. Lett. B 247, 127 (1990);
    Crossref
  16. V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 86, 012009 (2012);
    Crossref
  17. G. Antchev et al. (TOTEM Collaboration), Eur. Phys. J. C 80, 91 (2020);
    Crossref
  18. G. Antchev et al. (TOTEM Collaboration), Eur. Phys. Lett. 101, 21004 (2013);
    Crossref
  19. E. Martynov, B. Nicolescu, Eur. Phys. J. C 79, 461 (2019).
    Crossref
  20. N. Bence, A. Lengyel, Z. Tarics, E. Martynov, G. Tersomonov, Eur. Phys. J. A 57, 265 (2021);
    Crossref
  21. https://www.hepdata.net