Journal of Physical Studies 26(4), Article 4401 [16 pages] (2022)
DOI: https://doi.org/10.30970/jps.26.4401

THERMOMAGNETIC INSTABILITIES IN A NONUNIFORMLY ROTATING ELECTRICALLY CONDUCTIVE FLUID

M. I. Kopp{1} , A. V. Tur3 , V. V. Yanovsky{1,2} 

{1}Institute for Single Crystals, NAS Ukraine, 60, Nauky Ave., Kharkiv, UA–61001, Ukraine,
{2}V. N. Karazin Kharkiv National University, 4, Svobody Sq., Kharkiv, UA–61022, Ukraine,
{3}Université de Toulouse [UPS], CNRS, Institut de Recherche en Astrophysique et Planétologie,
9, du Colonel Roche Ave., BP 44346, 31028 Toulouse Cedex 4, France

Received 11 April 2022; in final form 10 August 2022; accepted 21 September 2022; published online 17 November 2022

The paper investigates the stability of small axisymmetric disturbances in a nonuniformly rotating viscous electrically conductive fluid taking into account galvanometric and thermo-magnetic phenomena. In the local geometrical optics approximation, we obtained a dispersion equation taking into account the Hall, the Nernst, the Righi-Leduc effects and gradients of temperature $\nabla T_0$ and thermo-electromotive force coefficient $\nablaα $ in constant magnetic field ${\bf{B}}_0$ and gravitational field ${\bf{g}}$. The growth rates of thermomagnetic instability (TMI) in a nonuniformly rotating electrically conducting fluid without an external magnetic field (${\bf{B}}_0 =0$) are obtained for the case of “smooth” (a weakly inhomogeneous medium) gradients ($\nabla T_0$ and $\nablaα $ ). The regions of the development of TMI are established depending on the profile of the angular velocity of rotation (Rossby number Ro) and the radial wave number $k_R$. The conditions under which the generation of a magnetic field with sharp gradients of temperature and thermo-electromotive force coefficient in the media with low $(σ → 0)$ and high $(σ → ∞)$ conductivity are found. The regions of the development of the Hall magnetorotational instability in an external magnetic field (${\bf{B}}_0\neq 0$) are established depending on the profile of the angular rotation velocity (Rossby number Ro) and the axial wavenumber $k_z$. The growth rates of TM instabilities for the propagation of perturbations with a wave vector ${\bf{k}}$ in the radial direction ${\bf{k}}\| {\bf{e}}_R$ are obtained taking into account the Nernst effect in an external magnetic field ${\bf{B}}_0$, the Righi-Leduc effect, the inhomogeneity of the equilibrium temperature and specific thermopower, and the buoyancy force in a temperature-stratified medium.

Key words: thermoelectromotive force, generation of magnetic fields, thermomagnetic instability, Boussinesq approximation, nonuniformly rotating electrically conductive fluid.

Full text


References
  1. L. E. Gurevich, Sov. Phys. JETP 17, 373 (1963).
  2. L. E. Gurevich, B. L. Gel'mont, Sov. Phys. JETP 19, 604 (1964).
  3. L. E. Gurevich, B. L. Gel'mont, Sov. Phys. JETP 20, 1217 (1965).
  4. V. A. Urpin, Sov. Phys. JETP 53, 1179 (1981).
  5. W. M. Elsasser, Phys. Rev. 55, 489 (1939);
    Crossref
  6. S. K. Runcorn, Trans. Am. Geophys. Union 35, 49 (1954);
    Crossref
  7. Continuum Theory and Modeling of Thermoelectric Elements, edited by C. Goupil (Wiley-VCH Verlag GmbH \& Co. KGaA, 2016).
  8. A. N. Dmitriev, Int. J. Geosci. 8, 1048 (2017);
    Crossref
  9. F. H. Hibberd, Proc. Roy. Soc. London A369, 31 (1979);
    Crossref
  10. G. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978).
  11. A. I. Laptukhov, Geomagn. Aeron. 20, 530 (1980).
  12. A. Schlütter, L. Biermann, Z. Naturforsch. 5a, 237 (1950);
    Crossref
  13. S. I. Braginsky, Geomagn. Aeron. 4, 698 (1964).
  14. L. A. Bol'shov, Yu. A. Dreizin, A. M. Dykhne, JETP Lett. 19, 168 (1974).
  15. B. A. Al'terkop, E. V. Mishin, A. A. Rukhadze, JETP Lett. 19, 170 (1974).
  16. V. Urpin, Plasma Phys. Rep. 45, 366 (2019);
    Crossref
  17. A. Z. Dolginov, Sov. Phys. Usp. 30, 475 (1987).
  18. V. Urpin, Mon. Notices Royal Astron. Soc. 472, L5 (2017);
    Crossref
  19. E. Liverts, M. Mond, V. Urpin, Mon. Notices Royal Astron. Soc. 404, 283 (2010);
    Crossref
  20. Y. M. Shtemler, E. Liverts, M. Mond, Astron. Nachr. {333}(3), 266 (2012);
    Crossref
  21. G. Montani, R. Benini, N. Carlevaro, A. Franco, Mon. Notices Royal Astron. Soc. 436, 327 (2013);
    Crossref
  22. E. Velikhov, Sov. Phys. JETP 36, 995 (1959).
  23. S. A. Balbus, J. F. Hawley, Astrophys. J. 376, 214 (1991).
  24. L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth–Heinemann, 1984).
  25. V. N. Zharkov, Internal Structure of the Earth and Planets (Gordon and Breach, New York, 1983).
  26. A. B. Mikhailovsky, Theory of Plasma Instabilities (Atomizdat, Moscow, 1977).
  27. O. N. Kirillov, F. Stefani, Proc. Int. Astron. Union 8, 233 (2012);
    Crossref
  28. O. N. Kirillov, F. Stefani, Y. Fukumoto, J. Fluid Mech. 760, 591 (2014);
    Crossref
  29. M. I. Kopp, A. V. Tur, V. V. Yanovsky, East Eur. J. Phys. 1, 4 (2019);
    Crossref
  30. F. Gantmacher, Lectures in analytical mechanics (Mir Publishers, Moscow, 1975).
  31. D. A. Shalybkov, Physics-Uspekhi 52, 915 (2009);
    Crossref
  32. G. Z. Gershuni, E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids (Keter Publishing House, Jerusalem, 1976).
  33. V. E. Zinoviev, Thermo Physical Properties of Metals at High Temperatures (Metalurgia, Moscow, 1989)