Journal of Physical Studies 27(1), Article 1401 [8 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.1401

ONSET OF ELECTROCONVECTION IN A COMPACTLY PACKED DIELECTRIC LIQUID-PERMEABLE LAYER WITH A MODULATED ELECTRIC FIELD

C. Rudresha , C. Balaji , V. Vidya Shree , S. Maruthamanikandan 

Department of Mathematics, Presidency University,
Bengaluru, Karnataka, India–560064,
e-mails: rudresha.c@presidencyuniversity.in, maruthamanikandan@presidencyuniversity.in

Received 20 September 2022; in final form 14 November 2022; accepted 26 December 2022; published online 04 March 2023

The effect of time-periodic electric field modulation on electroconvection in a compactly packed dielectric liquid-permeable layer is investigated using the small perturbation method coupled with the regular perturbation method. The dielectric constant is assumed to be a linear function of temperature. For small amplitude electric field modulation, the critical correction Rayleigh number is determinedusing the regular perturbation method. The critical Rayleigh number is obtained in terms of the electrical Rayleigh number, Vadasz number, normalized porosity, and the modulation frequency to determine the stability of the system. It is found that electric field modulation at low frequencies can create subcritical convective motion. The impact of Vadasz number is shown to be akin to that of the dielectrophoretic force. The stabilizing influence of normalized porosity is more pronounced when the frequency of electric field modulation is modest and large. The study reveals that time-varying electric fields and a densely packed porous layer may have implications for the control of electroconvection in heat transfer applications involving dielectric fluids as working media.

Key words: Darcy model, dielectric fluid, electric field, porous medium, porosity and modulation.

Full text


References
  1. J. R. Melcher, Continuum Electromechanics (MIT Press, Cambridge, 1981).
  2. D. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997);
    Crossref
  3. P. H. Roberts, Q. J. Mech. Appl. Math. 22, 211 (1969);
    Crossref
  4. M. Takashima, K. Aldridge, Q. J. Mech. Appl. Math. 29, 71 (1976);
    Crossref
  5. P. Martin, A. Richardson, J. Heat Trans. 106, 131, (1984);
    Crossref
  6. T. Maekawa, K. Abe, I. Tanasawa, Int. J. Heat Mass Trans. 35, 613 (1992).
  7. A. Douiebe, M. Hannaoui, G. Lebon, A. Benaboud, A. Khmou, Flow Turbul. Combust. 67, 185 (2001);
    Crossref
  8. B. Smorodin, Fluid Dyn. 36, 548 (2001);
    Crossref
  9. S. Maruthamanikandan, Convective Instabilities in Newtonian Ferromagnetic, Dielectric and Other Complex Liquids (PhD thesis, Bangalore University, Bangalore, India, 2005).
  10. S. Maruthamanikandan, S. Smita, Int. J. Comp. Eng. Res. 3, 347 (2013).
  11. S. S. Nagouda, S. Maruthamanikandan, Int. J. Comp. Eng. Res. 11, 1 (2015); http://pfigshare-u-files.s3.amazonaws.com/2071667/A011330110.pdf
  12. C. W. Horton, F. T. Rogers, Jr., J. Appl. Phys. 16, 367 (1945);
    Crossref
  13. E. Lapwood, Math. Proc. Cambridge Philos. Soc. 44, 508 (1948);
    Crossref
  14. J. Bear, Dynamics of Fluids in Porous Media (Courier Corporation, 1988).
  15. D. A. S. Rees, in Handbook of Porous Media, vol. 1, edited by K. Vafai (Marcel Dekker, 2000), p. 521.
  16. D. A. S. Rees, A. Bassom, Acta Mech. 144, 103 (2000);
    Crossref
  17. A. Bejan, I. Dincer, S. Lorente, A. Miguel, H. Reis, Porous and Complex Flow Structures in Modern Technologies (Springer, 2004);
    Crossref
  18. D. A. Nield, A. Bejan, Convection in Porous Media (Springer, 2006);
    Crossref
  19. K. Vafai, Handbook of Porous Media (Crc Press, 2015).
  20. D. Nield, C. T. Simmons, Transp. Porous Media 130, 237 (2019);
    Crossref
  21. S. Saravanan, H. Yamaguchi, Phys. Fluids 17, 084105 (2005);
    Crossref
  22. S. Saravanan, D. Premalatha, Int. J. Thermal Sci. 57, 717 (2012);
    Crossref
  23. D. Bhatta, M. S. Muddamallappa, D. N. Riahi, Transp. Porous Media 82, 385–399 (2010);
    Crossref
  24. M. S. Swamy, Heat Transfer – Asian Res. 44, 696 (2015);
    Crossref
  25. B. Smorodin, G. Gershuni, M. Velarde, Int. J. Heat Mass Trans. 42, 3159 (1999);
    Crossref
  26. B. Smorodin, in Proc. of 2002 IEEE 14th Int. Conf. on Dielectric Liquids. ICDL 2002 (Cat. No. 02CH37319), 425 (2002);
    Crossref
  27. V. Vidya Shree, C. Rudresha, C. Balaji, S. Maruthamanikandan, East Eur. J. Phys. 4, 117 (2022);
    Crossref
  28. B. Chandrashekar, R. Chandrappa, V. S. Venkatesh, M. Sokalingam, Int. J. Math. Phys. 3, 58 (2023);
    Crossref
  29. C. Rudresha, C. Balaji, V. Vidya Shree, S. Maruthamanikandan, J. Mines Met. Fuels 70, 35 (2022);
    Crossref
  30. C. Rudresha, C. Balaji, V. Vidya Shree, S. Maruthamanikandan, East Eur. J. Phys. 4, 104 (2022);
    Crossref
  31. C. Rudresha, C. Balaji, V. Vidya Shree, S. Maruthamanikandan, J. Comp. Appl. Mech. 53, 510 (2022);
    Crossref
  32. S. Maruthamanikandan, N. M. Thomas, S. Mathew, J. Phys.: Conf. Ser. 1850, 012061 (2021);
    Crossref
  33. S. S. Nagouda, S. Maruthamanikandan, Int. J. Mater. Arch. 4, 136 (2013).
  34. V. A. Yakubovich, V. M. Starzhinski, Linear Differential Equations with Periodic Coefficients (Wiley, New York, 1975).