Journal of Physical Studies 27(2), Article 2402 [11 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.2402

EXACT SOLUTIONS OF THE MHD THREE-DIMENSIONAL CASSON FLOW OF A TERNARY HYBRID NANOFLUID OVER A POROUS STRETCHING/SHRINKING SURFACE WITH MASS TRANSPIRATION

M. I. Kopp{1} , U. S. Mahabaleshwar2 , L. M. Pérez{3} 

{1}Institute for Single Crystals, NAS Ukraine, 60, ave. Nauky, Kharkiv, UA–61072, Ukraine,
{2}Department of Studies in Mathematics, Shivagangotri, Davangere University, Davangere, 577007, India,
{3}Departamento de Física, FACI, Universidad de Tarapacá, Casilla, 7D, Arica, Chile

Received 11 January 2023; in final form 22 February 2023; accepted 10 April 2023; published online 08 June 2023

In this paper, the three-dimensional Casson flow of a ternary hybrid nanofluid over a porous linearly stretching/shrinking surface in the presence of an external magnetic field is considered. The surface deformation process is described by introducing two parameters of stretching/shrinking in the lateral directions. Using similarity transformations, the basic set of nonlinear partial differential equations is converted into ordinary differential equations. An exact analytical solution to this boundary value problem is obtained. The influence of the Casson parameter, magnetic field, porosity medium, and stretching/shrinking parameter, taking into account mass transpiration, on the velocity profiles and the skin friction coefficients is considered in detail. It has been established that the results obtained in some limited cases are in excellent agreement with the available data. Tables show the new results for the skin friction coefficients in the lateral directions ($x$ and $y$) for different variants of surface deformation.

Key words: Casson flow, ternary hybrid nanofluid, mass transpiration, analytical solution.

Full text


References
  1. B. C. Sakiadis, AIChE J. 7, 221 (1961);
    Crossref
  2. F. K. Tsou, E. M. Sparrow, R. J. Goldstein, Int. J. Heat Mass Transf. 10, 219 (1967);
    Crossref
  3. L. Crane, Z. Angew. Math. Phys. 21, 645 (1970);
    Crossref
  4. C. Y. Wang, Phys. Fluids 27, 1915 (1984);
    Crossref
  5. K. Ahmad, R. Nazar, J. Sci. Technol. 3, 33 (2011).
  6. M. Ramzan, S. Inam, S. A. Shehzad, Alex. Eng. J. 55, 311 (2015);
    Crossref
  7. M. B. Ashraf, T. Hayat, M. S. Alhuthali, J. Aerosp. Eng. 29, 04015065-1-8 (2016);
    Crossref
  8. S. Nadeem, R. U. Haq, N. S. Akbar, Z. H. Khan, Alex. Eng. J. 52, 577 (2013);
    Crossref
  9. S. Nadeem, R. U. Haq, N. S. Akbar, IEEE Trans. Nanotechnol. 13, 108 (2014);
    Crossref
  10. G. Mahanta, S. Shaw, Alex. Eng. J. 54, 653 (2015);
    Crossref
  11. M. Krishna Murthy, Int. J. Chem. Eng. Res. 41, 29 (2016).
  12. S. U. S. Choi, in Development and Applications of Non-Newtonian Flows, Vol. 66, edited by D. A. Signier, H. P. Wang (ASME, New York, 1995), p. 99.
  13. T. Anusha, U. S. Mahabaleshwar, Y. Sheikhnejad, Transp. Porous Med. 142, 333 (2021);
    Crossref
  14. S. Manjunatha, V. Puneeth, B. J. Gireesha, A. J. Chamkha, J. Appl. Comput. Mech. 8, 1279 (2022);
    Crossref
  15. I. L. Animasaun, S. J. Yook, T. Muhammad, A. Mathew, Surf. Interfaces 28, 101654 (2022);
    Crossref
  16. T. Maranna, U. S. Mahabaleshwar, M. I. Kopp, J. App. Comput. Mech. 9(2), 487 (2023);
    Crossref
  17. S. Madhusudan, S. Kharabela, P. S. Kumar, Karbala Int. J. Mod. Sci. 6, 93 (2020);
    Crossref
  18. W. Ibrahim, T. Anbessa, Hindawi Math. Probl. Eng. 2020, Article ID 8656147 (2020);
    Crossref
  19. A. B. Vishalakshi, U. S. Mahabaleshwar, I. E. Sarris, Micromachines 13, 116 (2022);
    Crossref
  20. U. S. Mahabaleshwar et al., Sustainability 14, 7020 (2022);
    Crossref
  21. A. B. Vishalakshi, U. S. Mahabaleshwar, M. Hatami, Sci. Rep. 12, 16071 (2022);
    Crossref
  22. U. Khan et al., Waves Random Complex Media, published online: 25 July 2022;
    Crossref
  23. K. Vajravelu et al., Int. J. Appl. Comput. Math. 3, 1619 (2017);
    Crossref