Journal of Physical Studies 27(4), Article 4401 [8 pages] (2023)
DOI: https://doi.org/10.30970/jps.27.4401

EFFECT OF MAGNETIC FIELD MODULATION ON BÉNARD–TAYLOR FERROCONVECTION

C. Balaji , C. Rudresha , V. Vidya Shree , S. Maruthamanikandan 

Department of Mathematics, CMR Institute of Technology, Bengaluru, 560037, India
Department of Engineering Mathematics, HKBK College of Engineering, Bengaluru, 560045, India
Department of Mathematics, SJB Institute of Technology, Bengaluru, 560060, India
Department of Mathematics, School of Engineering, Presidency University, Bengaluru, 560064, India,
e-mails: balaji.c@cmrit.ac.in, rudreshac.mt@hkbk.edu.in, vidyashreev@sjbit.edu.in, maruthamanikandan@presidencyuniversity.in

Received 03 August 2023; in final form 30 October 2023; accepted 08 November 2023; published online 07 December 2023

This paper is concerned with the influence of rotation on the onset of ferromagnetic fluid convection in the presence of both modulated and unmodulated magnetic fields. The effects of magnetic field modulation and rotation on the onset of ferroconvection are of interest from both practical and theoretical points of view. Modulation of an appropriate parameter may significantly affect the motion and improve the stability of various systems, including charges in an electrostatic field and ferromagnetic resonance. Rotating ferrofluids have potential uses in a variety of fields including rotating turbomachines and chemical processing industry. The resulting eigenvalue problem is solved using isothermal boundary conditions and the regular perturbation method under the assumption of a small modulation amplitude. On the assumption that the principle of exchange of stabilities is valid, the onset criteria are formulated. The magnetic parameter, the Taylor number, the Prandtl number, and the magnetic field modulation frequency are all functions of the thermal Rayleigh number shift. The influence of various physical factors is perceived to be significant at moderate values of the magnetic field modulation frequency. The study shows that, in the presence of both magnetization and rotation, the magnetic field modulation has a destabilizing impact on the system with convection occurring faster than in the unmodulated system.

Key words: magnetic fluid, magnetic field modulation, perturbation method, stability, rotation.

Full text


References
  1. K. Sano, M. Doi, J. Phys. Soc. Jpn. 52, 2810 (1983);
    Crossref
  2. B. M. Berkovsky et al., Magnetic Fluids: Engineering Applications (Oxford Science Publications, 1993).
  3. H. E. Horng, Chin-Yih Hong, S. Y. Yang, H. C. Yang, J. Phys. Chem. Solids. 62, 1749 (2001);
    Crossref
  4. S. Odenbach, Colloidal magnetic fluids: basics, development and application of ferrofluids (Springer, 2009);
    Crossref
  5. B. A. Finlayson, J. Fluid. Mech. 40, 753 (1970);
    Crossref
  6. L. Schwab, U. Hildebrandt, K. Stierstadt, J. Magn. Magn. Mater. 39, 113 (1983);
    Crossref
  7. S. Aniss, J. P. Brancher, M. Souhar, J. Magn. Magn. Mater. 122, 319 (1993);
    Crossref
  8. P. N. Kaloni, J. X. Lou, Phys. Rev. E 70, 026313 (2004);
    Crossref
  9. S. A. Suslov, Phys. Fluids. 20, 084101 (2008);
    Crossref
  10. S. Maruthamanikandan, N. M. Thomas, S. Mathew, J. Phys. Conf. Ser. 1139, 012024 (2018);
    Crossref
  11. S. Mathew, S. Maruthamanikandan, J. Phys. Conf. Ser. 1139, 012023 (2018);
    Crossref
  12. T. N. Mary, S. Maruthamanikandan, in Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering, edited by B. Rushi Kumar, R. Sivaraj, J. Prakash (Springer, Singapore, 2021), p. 363;
    Crossref
  13. V. Vidya Shree, C. Rudresha, C. Balaji, S. Maruthamanikandan, East Eur. J. Phys. No. 4, 112 (2022);
    Crossref
  14. S. Aniss, M. Belhaq, M. Souhar, J. Heat Transfer 123, 428 (2001);
    Crossref
  15. P. N. Kaloni, J. X. Lou, Phys. Rev. E 71, 066311 (2005);
    Crossref
  16. P. Matura, M. Lücke, Phys. Rev. E 80, 026314 (2009);
    Crossref
  17. H. Engler, S. Odenbach, Proc. Appl. Math. Mech. 9, 204135 (2009);
    Crossref
  18. M. I. Kopp, A. V. Tur, V. V. Yanovsky, East Eur. J. Phys. No. 2, 5 (2020);
    Crossref
  19. C. Balaji, C. Rudresha, V. Vidya Shree, S. Maruthamanikandan, Iraqi J. Appl. Phys. 18(4), 15 (2022).
  20. B. Chandrashekar, R. Chandrappa, V. S. Venkatesh, M. Sokalingam, Int. J. Math. Phys. 13, 58 (2023);
    Crossref
  21. M. Das Gupta, A. S. Gupta, Int. J. Eng. Sci. 17, 271 (1979);
    Crossref
  22. D. N. Riahi, Proc. R. Soc. London. Ser. A Math. Phys. Sci. 436, 121 (1992);
    Crossref
  23. S. Govender, Transp. Porous Media, 51, 315 (2003);
    Crossref
  24. S. Saravanan, H. Yamaguchi, Phys. Fluids, 17, 084105 (2005);
    Crossref
  25. M. S. Malashetty, M. S. Swamy. Phys. Fluids 23, 064108 (2011);
    Crossref
  26. S. Maruthamanikandan, N. M. Thomas, S. Mathew, J. Phys. Conf. Ser. 1850, 012061 (2021);
    Crossref
  27. M. I. Kopp, V. Yanovsky, Ukr. J. Phys. 68, 30 (2023);
    Crossref
  28. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961).
  29. C. Rudresha, C. Balaji, V. Vidya Shree, S. Maruthamanikandan, J. Phys. Stud. 27, 1401 (2023);
    Crossref